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above, we obtain equations for the determination of a and 6, which are easily integra- 
ted. The subsequent calculations are obvious. 

REFERENCES 

1. Filatov, A. N., Methods of Averaging in Differential and Integro-Differential 

Equations. “Fan”, Tashkent, 1971. 
2. Mitropol’skii, Iu. A, and Filatov, A. N. , Averaging of integro-differ- 

ential and integral equations. Ukrainsk. Matem. Zh. , Vol. 24, Np 1, 1972. 
3, Il’iushin, A.A,, Movliankulov, Kh., Sunchaliev, R. M., and 

Filatov, A, N,, On some methods f~st~y~g nonlinear problems of visco- 
elasticity theory. Dokl. Akad. Nauk SSSR. Vol. 206, Np 1, 1972. 

4. Il’iushin, A.A. and Ogibalov, P.M., Quasilinear theory of voscoelasti- 

city and the small parameter method, Mekhanika Polimerov, Na 2, 1966. 

5. Il’iushin, A. A. and Pobedria, B. K., Fundamentals of the Mathematical 

Theory of Thermoviscoelastlcityy. “Nat&a”, Moscow, 1970. 

6. Il’iushin, A. A., Mechanics of a Continuous Medium. Moscow State University, 

Moscow, 1971. 

7. Mitropol’skii. Iu, A., Method of Averaging in Nonlinear Mechanics. “Nauko- 

va Dumka”, Kiev, 1971. 
8, Mitropol’skii, Iu. A. and Moseennov. B. I., Lectures on the Applica- 

tion of A~mptotic Methods to the Solution of Partial Differential Equations. 

Academy of Sciences of the Ukrainian SSR, Kiev, 1963. 

Translated by J. F. H, 

UDC 539.3 

FuRe SHEAR OF AN ELASTIC HALFSPACE WITH A SYSTEM OF CRACKS 

PMM Vol. 38, NQ 5, 1974, pp. 953-957 

V. N. BERKOVICH 
(Rostov-on-Don) 

(Received June 7, 1973) 

We consider a dynamic mixed problem for an elastic halfspace, weakened by a 
system of two-dimensional cracks and subject to conditions of anti-plane defor- 

mation. 

We raise the problem of determining the jump in the stresses at the cracks in 
an elastic halfspace when shear displacements on the cracks are known. Using 
the method developed in [ 1, 21 we reduce the system of integral equations for 

the mixed problem to an equivalent system of linear algebraic equations with a 
completely continuous operator. We analyze the problems relating to the solva- 
bility of the integral equations and the infinite system. Investigation of the solu- 
tion in the zero approximation is given. 

The dynamics of an elastic halfspace with a crack was studied in @, 4]where- 
in the main emphasis was focused on problems relating to crack propagation and 
the diffraction of elastic waves by the cracks. 
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1. We assume that the planes of the cracks J,, are of width I, (n = i J,..., N), are 

directed parallel to the space coordinate z , and are unbounded on both sides (Fig. 1). 

Fig. 1 

On each plane of a crack tangential displace- 
ments are given, which vary harmonically 

with time t with circular frequency o and 

are directed parallel to the z-axis: 

w,,* (s, t) = Re W,* (s) s+‘, ogs,<z, 

The local coordinate s along the edge of 

the crack is reckoned from the free boundary 

I? of the elastic halfspace. Plus and minus 

signs refer , respectively, to the right and 

left edges of the crack J,. 
Under the conditions of stationary oscilla- 

tions we are required to determine the jumps 

in the stresses at the cracks 

[z,* (s, t)l = Re [r, (41 eiot, 0 6 d < r* 

The problem so formulated reduces to the 

following boundary value problem for the 

Helmholtz equation : 

Aw” + k’w’ = 0, k4 = D@‘p-x 
(1.1) 

tJWO 

ay r= I 0, UP 1 
.I,* 

= W,f (s) 

Here w” is the complex amplitude of the displacements in the elastic halfspace, U is 
the density of the material, and p is the shear modulus. 

We employ the Green’s function method [5] to obtain the integral equation for the 

mixed problem. Imposing on the Green’s function G (4, ?I I 5, Y) for Eq. (1.1) the addi- 

tional condition (8G / 8q) I,_, = 0, we arrive at a system of integral equations for the 

unknown jumps in the stresses at the cracks. In dimensionless form this system has the 

following form : 
1 N ? 

-- 
w 

bn, (r, P) qn (P) dP = fm (4 (1.2) 
n ,,=I o 

21Jqn (4 = 1% @)I 4Jm-‘9 ogr< 1 

&I w&f (4 = W,f (s), l,r = s 

% (4 = w,+ (r) + w,- (r) 

kmn (r, P) = KO (+J?,,,;) + K~ (x,,R,J 

%f, = [(r - r&J2 + (P - P,,$,)~ & 2 (r - r,&) (p - p,,,$ cos ~~$1 s 

r f=d,,,,, nm cos a, / sin $,$, &,,,l, = b,, = h, - h, 

P,,,$ = d,, cos a,,, ( sin $,,,$, $ *=anfa, mn 

x, = - ih,, h, = kl,, m= 1,2,..., N 



Here K, (z) is the MacDonald function of zero order. 

We make the following assumptions relative to the dimensionless parameters intro- 

duced above : 
1) The crack dimensions are sufficiently large in comparison with the length of 

the shear wave, i.e. h,, S 1 . 
2) The mutual separation of the cracks on the free surface I’ is also sufficiently 

large in comparison with the crack dimensions, i.e. d,,, >> 1 . 

3) I r,,Z I > 1, I P,,$ I > 1 - 
One of the conditions sufficient for the satisfaction of (3) is the requirement 

d > 2tg a* cos a, (1.3) 
u, = min, 1 a, 1, u* = mnxn) u, 1, d=min d m,n mn 

It follows from the condition (1.3), by virtue of the assumption (2), that 

a, <- a* < n: I 2, 1 < 2a, < rc (1.4) 

In the case d > 1 the quantity a0 turns out to be close to rc / 2 and the inequality 

(1.4) guarantees a sufficiently wide range of variation of the angles a,, a situation which 

in some measure justifies the certain artificiality of condition (3). 

2. Assuming that the right side of the integral equation (1.2) is representable by a 
Kontorovich-Lebedev integral, we restric our consideration to the case [l] 

im c 1.) : I, (H,,,I.l I,-’ (X,) (2.1) 

Upon taking into account the relations (3), the addition theorems for Bessel fnnctions, 

and the Cramer formulas [6], we can transform the functions kmn (r, p) respectively, to 

the form (the first of the integrals is to be understood in the principal value sense) 

m 

k n,m()‘, p) .= .A_ ’ (2.2) 
ni ! 

K-i: (,x~P) ‘_i, (~mr) “, (r) d’ 

‘CL 

7’,, (T) :! ch &T (‘11 lj,,,T /’ \tl .X1 

‘Pmn (i;, Z) >T 

i 

;;; ;::: ‘p’;$$ y( ; ;; y- ; 

,C‘ n, 

A, = n / 2 -- rn, II,,: n/Z .( r,, 

%,,,, -: %1%3n. F Y 1 s~rn(~-~l) 7. 

The 11, (z) and KJJ (3) here are modified Bessel functions. Using the method of residues, 
we can write the function k,,,, (r, p) in the form of the following series: 

F I’(‘< /‘I,, (Ti 1 ; _~ y (2. 3) Y 



Pure shear of an elastic halfspace with a system of cracks 901 

where the 5 are the poles of the function T,,, (z) in the upper halfplane. Let zr be the 

zeros of this function in this same halfplane. Using the method given in [l, 21, we re- 

duce the system of integral equations (1.2) with the right side (2.1) to an equivalent 

system of linear algebraic equations. For this we seek the unknown functions q,, (r) in the 
form 

(2.4) 

where the xl are suitably defined constants. We substitute the expressions (2.2)-(2.4) 

into the left side of equation (1.2) and carry out the integration. As a result of the inte- 
gration we obtain series of Dirichlet type in the functions I, (%F) (Y = 1,2,...). Upon 

requiring that these series yield the right side of Eq. (2.1) we arrive at the following sys- 
tem of matrix equations 

A(m)X(m)f -&a, n)X(n)=B(m) (2.5) 
ll=l 

X (4 = PI (41, w [x, y] = x'y - zy' 

67, =JI -‘w, (1 + ch 2c~,,5, / ch n&J 

20 (n) = T,‘(is), 11~ = 1,2,. . , N 

where the prime on the summation sign means that the term for which n = m is to be 

deleted. The equations (2.5) represent necessary and sufficient conditions for the solva- 

bility of Eq. (1.2) with the right side given by equation (2.1) in the class of solutions 

representable in the form (2.4) by virtue of the minimality of the system of functions 

{I, (xmr)) @ = l,z,...)on the interval 0 $ r 6; 1 (see Cl]). The latter property shows 
the equivalence of the infinite system to the integral equation in the sense that the in- 
finite system and the integral equation are both solvable (or both nonsolvable) and they 
automatically have the same number of solutions. 

3. Using the uniform asymptotic estimates for the behavior of the modified Bessel 
functions, we can readily establish that when i, > 1 and d,,,,, 9 1 the elements of the 
matrices A(m) are sufficiently close to the elements of the matrix A = ((5,. - Z&-I}, 

and the elements of the matrices D (m, n) are small of the order 

0 [exp (-- I 5, - 21 I 6,,)1, fin,,, = Ink, 

An infinite system with a matrix whose principal part coincides with the matrix A (m) 

was considered in [l]. where it was shown that an equation of the type (2.5) can be 
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reduced to an equivalent equation of the second kind 

x (m) = . I-1 [,I_- A (m)] x (m) 4 .,l-‘I3 (m) - (3.1) 

g,- iI ‘/J (m, n) 9 (n), m = 1, 2, . . , A” 

We note that in the given case it is necessaryin the process of determining the matrix 

A-l to factor the function T, (z) z-l (which has a double pole on the real axis) with 
respect to the real axis in the complex z plane. 

It is not difficult to verify that the matrices on the right side of the system (3.1) ge- 
nerate completely continuous operators in the space of the sequences s (c)! 0 < 6 < I/._, , 
with the metric 

II K I&(a) = SUPl I r,l” I < -J, liml 1 rlln ( = 0 (l-,00) 

The complete continuity of the operators of the system (3.1) enables us to make known 

inferences from this theory relative to the solvability of the infinite system itself and 
the integral equation (1.2) corresponding to it. In the case d s 1, L $+ 1 (h = min&,) 

the operators on the right side of the system (3.1) are contractive and the infinite sys- 

tem is then uniquely solvable ; the unique solution can be found by the method of suc- 

cessive appoximations. 

4. We study the solution of the problem in the zero approximation. As the solution 
of the system (3.1) in the zero approximation we choose the matrices 

X” (m) = A-l B (m), m = 1,2,..., N 

since the remaining terms of the system are negligibly small in the norm of s (G), 0 < 

e < l/a. Taking the expressions for 2~’ (m) to the right side of Eq. (2.4) and summing 

the resulting series with the aid of contour integration, we arrive finally at the follow- 

ing asymptotic expression for the unknown functions (T+ (z, nz) resulting from the fac- 

torization of Tm (2) 2-i): 

qm (r) - (In r)-l ~z~, (r, q) [I -i- 0 (l/iiTr)], r + I (4.1) 

9, (r) - Q (77, ~a) (kr / 21rim1 [I i 0 (r)] r-0 

O<Rel<l,. IrL = 1, 2,. _, iv 

(4.2) 

The expressions (4.1) and (4.2) show, subject to the restrictions d > 1 and li s 1 , that 
the inclination of the cracks to the free boundary of the halfspace has practically no 
influence on the distribution of the contact stresses close to the ends and that the influ- 
ence on the m-th crack of all the remaining cracks is very insignificant and is characterized 

by the quantity A (q, m) = 0 (h-I”‘den) 

The author thanks V. A. Babe&o for his interest in this work and for a useful discus- 
sion of the results. 
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A simplifi~tion and generalization of the proof presented in [l] is given. 

1, Let V be the region occupied by an elastic body subjected to deformation, and 

Ye be subregions representing finite elements. For simplicity we set, as in fl], UP = Y. 

The field of displacements fe in each subregion is approximated by formula fz] 

fe = NQe (1.1) 

where fe is the displacement vector of points within the element of number e, 6e is the 
vector of nodal displacements, and Ne is a rectangular matrix whose elements are func- 

tions of coordinates. The approximation of the displacement throughout region V can 
be defined bv n 

(1.2) 

where 6,, are components of the displacement vector of the k- th node and functions 

f kns are pieccwise determinate and nonzero only in elements one of whose vertices bears 

the number k. The system of equations of the method of finite elements is derived by 
minimi~ng the functional of energy over the set of functions of the form (1.2). A simi- 
lar method of solving the problem of minimization of the energy functional was used in 
[3, 43. The sequence of approximate solutions converges to the exact (generalized) one, 

if conditions (l)-(3) of the convergence theorem are satisfied (see Sect. 19 of [3]). 

2, Similar results were obtained in [5] for the case when the operator of the boundary 
value problem contains derivatives of an arbitrary order. Let us briefly consider the con- 


